Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.511
Filtrar
1.
Sci Rep ; 14(1): 8245, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589670

RESUMO

The human skin microbiome comprises diverse populations that differ temporally between body sites and individuals. The virome is a less studied component of the skin microbiome and the study of bacteriophages is required to increase knowledge of the modulation and stability of bacterial communities. Staphylococcus species are among the most abundant colonisers of skin and are associated with both health and disease yet the bacteriophages infecting the most abundant species on skin are less well studied. Here, we report the isolation and genome sequencing of 40 bacteriophages from human skin swabs that infect coagulase-negative Staphylococcus (CoNS) species, which extends our knowledge of phage diversity. Six genetic clusters of phages were identified with two clusters representing novel phages, one of which we characterise and name Alsa phage. We identified that Alsa phages have a greater ability to infect the species S. hominis that was otherwise infected less than other CoNS species by the isolated phages, indicating an undescribed barrier to phage infection that could be in part due to numerous restriction-modification systems. The extended diversity of Staphylococcus phages here enables further research to define their contribution to skin microbiome research and the mechanisms that limit phage infection.


Assuntos
Bacteriófagos , Humanos , Bacteriófagos/genética , Coagulase/genética , Genoma Viral , Pele/microbiologia , Fagos de Staphylococcus/genética , Staphylococcus/genética
2.
Int J Food Microbiol ; 416: 110657, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38452659

RESUMO

Although bacteriophage-based biosensors are promising tools for rapid, convenient, and sensitive detection of Staphylococcus aureus in food products, the effect of biosensors using temperate phages as biorecognition elements to detect viable S. aureus isolates remains unclear. In this study, three temperate S. aureus phages were isolated and their biological features (one-step growth, host range, pH stability, temperature stability, and adsorption rate) were evaluated as the biological element. The selected phage SapYZUs8 was immobilized on the nanozyme Cu-MOF via electrostatic interactions to generate SapYZUs8@Cu-MOF, and its detection performance in real food (skim milk and pork) was then evaluated. Compared with phages SapYZUm7 and SapYZUs16, phage SapYZUs8 exhibited a broader host range, greater pH stability (3-12), and a better absorption rate (92 %, 8 min) suitable for S. aureus detection, which is likely the result of the DNA replication (DNA helicase) and phage tail protein genes in the SapYZUs8 genome. Therefore, phage SapYZUs8 was fixed on Cu-MOF to generate SapYZUs8@Cu-MOF, which exhibited good sensitivity and specificity for rapid colourimetric detection of viable S. aureus. The method took <0.5 h, and the detection limit was 1.09 × 102 CFU/mL. In addition, SapYZUs8@Cu-MOF was successfully employed for the colourimetric detection of S. aureus in food samples without interference from different food additives, NaCl concentrations, or pH values. With these benefits, it allows rapid visual assessment of S. aureus levels.


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Colorimetria , Alimentos , Fagos de Staphylococcus/genética
3.
ACS Appl Mater Interfaces ; 16(14): 17232-17241, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554078

RESUMO

The increasing prevalence of bacterial multidrug antibiotic resistance has led to a serious threat to public health, emphasizing the urgent need for alternative antibacterial therapeutics. Lytic phages, a class of viruses that selectively infect and kill bacteria, offer promising potential as alternatives to antibiotics. However, injectable carriers with a desired release profile remain to be developed to deliver them to infection sites. To address this challenge, phage-loaded microparticles (Phage-MPs) have been developed to deliver phages to the infection site and release phages for an optimal therapeutic effect. The Phage-MPs are synthesized by allowing phages to be electrostatically attached onto the porous polyethylenimine-modified silk fibroin microparticles (SF-MPs). The high specific surface area of SF-MPs allows them to efficiently load phages, reaching about 1.25 × 1010 pfu per mg of microparticles. The Phage-MPs could release phages in a controlled manner to achieve potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Unlike the diffuse biodistribution of free phages post-intraperitoneal injection, Phage-MPs could continuously release phages to effectively boost the local phage concentration at the bacterial infection site after they are intraperitoneally injected into an abdominal MRSA-infected mouse model. In a mouse abdominal MRSA infection model, Phage-MPs significantly reduce the bacterial load in major organs, achieving an efficient therapeutic effect. Furthermore, Phage-MPs demonstrate outstanding biocompatibility both in vitro and in vivo. Overall, our research lays the foundation for a new generation of phage-based therapies to combat antibiotic-resistant bacterial infections.


Assuntos
Bacteriófagos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Camundongos , Animais , Distribuição Tecidual , Fagos de Staphylococcus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
mBio ; 15(4): e0199023, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470054

RESUMO

The species- and clone-specific susceptibility of Staphylococcus cells for bacteriophages is governed by the structures and glycosylation patterns of wall teichoic acid (WTA) glycopolymers. The glycosylation-dependent phage-WTA interactions in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) have remained unknown. We report a new S. epidermidis WTA glycosyltransferase TagE whose deletion confers resistance to siphoviruses such as ΦE72 but enables binding of otherwise unbound podoviruses. S. epidermidis glycerolphosphate WTA was found to be modified with glucose in a tagE-dependent manner. TagE is encoded together with the enzymes PgcA and GtaB providing uridine diphosphate-activated glucose. ΦE72 transduced several other CoNS species encoding TagE homologs, suggesting that WTA glycosylation via TagE is a frequent trait among CoNS that permits interspecies horizontal gene transfer. Our study unravels a crucial mechanism of phage-Staphylococcus interaction and horizontal gene transfer, and it will help in the design of anti-staphylococcal phage therapies.IMPORTANCEPhages are highly specific for certain bacterial hosts, and some can transduce DNA even across species boundaries. How phages recognize cognate host cells remains incompletely understood. Phages infecting members of the genus Staphylococcus bind to wall teichoic acid (WTA) glycopolymers with highly variable structures and glycosylation patterns. How WTA is glycosylated in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) species has remained unknown. We describe that S. epidermidis glycosylates its WTA backbone with glucose, and we identify a cluster of three genes responsible for glucose activation and transfer to WTA. Their inactivation strongly alters phage susceptibility patterns, yielding resistance to siphoviruses but susceptibility to podoviruses. Many different CoNS species with related glycosylation genes can exchange DNA via siphovirus ΦE72, suggesting that glucose-modified WTA is crucial for interspecies horizontal gene transfer. Our finding will help to develop antibacterial phage therapies and unravel routes of genetic exchange.


Assuntos
Infecções Estafilocócicas , Staphylococcus epidermidis , Humanos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo , Staphylococcus aureus/genética , Coagulase/metabolismo , Glucose/metabolismo , Ácidos Teicoicos/metabolismo , Staphylococcus/metabolismo , Fagos de Staphylococcus/genética , DNA/metabolismo , Parede Celular/metabolismo , Infecções Estafilocócicas/metabolismo
5.
Microb Cell Fact ; 23(1): 89, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528536

RESUMO

BACKGROUND: Staphylococcus aureus and its single or mixed biofilm infections seriously threaten global public health. Phage therapy, which uses active phage particles or phage-derived endolysins, has emerged as a promising alternative strategy to antibiotic treatment. However, high-efficient phage therapeutic regimens have yet to be established. RESULTS: In this study, we used an enrichment procedure to isolate phages against methicillin-resistant S. aureus (MRSA) XN108. We characterized phage SYL, a new member of the Kayvirus genus, Herelleviridae family. The phage endolysin LysSYL was expressed. LysSYL demonstrated stability under various conditions and exhibited a broader range of efficacy against staphylococcal strains than its parent phage (100% vs. 41.7%). Moreover, dynamic live/dead bacterial observation demonstrated that LysSYL could completely lyse MRSA USA300 within 10 min. Scan and transmission electron microscopy revealed evident bacterial cell perforation and deformation. In addition, LysSYL displayed strong eradication activity against single- and mixed-species biofilms associated with S. aureus. It also had the ability to kill bacterial persisters, and proved highly effective in eliminating persistent S. aureus when combined with vancomycin. Furthermore, LysSYL protected BALB/c mice from lethal S. aureus infections. A single-dose treatment with 50 mg/kg of LysSYL resulted in a dramatic reduction in bacterial loads in the blood, liver, spleen, lungs, and kidneys of a peritonitis mouse model, which resulted in rescuing 100% of mice challenged with 108 colony forming units of S. aureus USA300. CONCLUSIONS: Overall, the data provided in this study highlight the strong therapeutic potential of endolysin LysSYL in combating staphylococcal infections, including mono- and mixed-species biofilms related to S. aureus.


Assuntos
Endopeptidases , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus , Staphylococcus aureus , Fagos de Staphylococcus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Biofilmes
6.
Curr Opin Microbiol ; 78: 102434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364502

RESUMO

Staphylococcus epidermidis is a common member of the human skin and nose microbiomes and a frequent cause of invasive infections. Transducing phages accomplish the horizontal transfer of resistance and virulence genes by mispackaging of mobile-genetic elements, contributing to severe, therapy-refractory S. epidermidis infections. Lytic phages on the other hand can be interesting candidates for new anti-S. epidermidis phage therapies. Despite the importance of phages, we are only beginning to unravel S. epidermidis phage interactions. Recent studies shed new light on S. epidermidis phage diversity, host range, and receptor specificities. Modulation of cell wall teichoic acids, the major phage receptor structures, along with other phage defense mechanisms, are crucial determinants for S. epidermidis susceptibility to different phage groups.


Assuntos
Terapia por Fagos , Infecções Estafilocócicas , Humanos , Staphylococcus epidermidis/genética , Fagos de Staphylococcus/genética , Especificidade de Hospedeiro , Virulência , Infecções Estafilocócicas/terapia
7.
Front Cell Infect Microbiol ; 14: 1336821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357445

RESUMO

Drug-resistant Staphylococcus aureus stands as a prominent pathogen in nosocomial and community-acquired infections, capable of inciting various infections at different sites in patients. This includes Staphylococcus aureus bacteremia (SaB), which exhibits a severe infection frequently associated with significant mortality rate of approximately 25%. In the absence of better alternative therapies, antibiotics is still the main approach for treating infections. However, excessive use of antibiotics has, in turn, led to an increase in antimicrobial resistance. Hence, it is imperative that new strategies are developed to control drug-resistant S. aureus infections. Bacteriophages are viruses with the ability to infect bacteria. Bacteriophages, were used to treat bacterial infections before the advent of antibiotics, but were subsequently replaced by antibiotics due to limited theoretical understanding and inefficient preparation processes at the time. Recently, phages have attracted the attention of many researchers again because of the serious problem of antibiotic resistance. This article provides a comprehensive overview of phage biology, animal models, diverse clinical case treatments, and clinical trials in the context of drug-resistant S. aureus phage therapy. It also assesses the strengths and limitations of phage therapy and outlines the future prospects and research directions. This review is expected to offer valuable insights for researchers engaged in phage-based treatments for drug-resistant S. aureus infections.


Assuntos
Bacteriófagos , Staphylococcus aureus Resistente à Meticilina , Terapia por Fagos , Infecções Estafilocócicas , Animais , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fagos de Staphylococcus
8.
Eur J Orthop Surg Traumatol ; 34(1): 653-657, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37679422

RESUMO

PURPOSE: To evaluate the stability of a clinically used Staphylococcal bacteriophage with doses of vancomycin that are encountered with local administration of vancomycin for musculoskeletal infections. METHODS: A Staphylococcal bacteriophage was evaluated for stability in different pH ranges. Then that same bacteriophage was evaluated for stability with different concentrations of vancomycin and with vancomycin biodegradable antibiotic beads. RESULTS: The bacteriophage had stability within a pH range of 4-10. There was a statistically significant (P < 0.05) decrease in the amount of bacteriophage over 24 h for vancomycin concentrations of 10 mg/mL and 100 mg/mL compared to lower vancomycin concentrations (1 mg/mL, 0.1 mg/mL and normal saline). However, no statistically significant decrease in the amount of bacteriophage was seen with biodegradable vancomycin beads over 24 h. CONCLUSION: These findings have important clinical ramifications in that they show local administration of bacteriophages with concomitant local vancomycin powder therapy should be avoided. Moreover, these findings should spearhead further research into bacteriophage stability in in vivo environments.


Assuntos
Infecções Estafilocócicas , Vancomicina , Humanos , Fagos de Staphylococcus , Antibacterianos , Infecções Estafilocócicas/tratamento farmacológico
9.
J Mol Biol ; 436(4): 168415, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38135177

RESUMO

Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific "helper" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal itself, produced by overexpression, and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.


Assuntos
Ilhas Genômicas , Fagos de Staphylococcus , Staphylococcus aureus , Humanos , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/virologia , Fagos de Staphylococcus/genética , Fatores de Virulência/genética , Transdução Genética , Empacotamento do DNA , Conformação de Ácido Nucleico
10.
Nature ; 623(7989): 1001-1008, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968393

RESUMO

Cyclic oligonucleotide-based antiphage signalling systems (CBASS) protect prokaryotes from viral (phage) attack through the production of cyclic oligonucleotides, which activate effector proteins that trigger the death of the infected host1,2. How bacterial cyclases recognize phage infection is not known. Here we show that staphylococcal phages produce a structured RNA transcribed from the terminase subunit genes, termed CBASS-activating bacteriophage RNA (cabRNA), which binds to a positively charged surface of the CdnE03 cyclase and promotes the synthesis of the cyclic dinucleotide cGAMP to activate the CBASS immune response. Phages that escape the CBASS defence harbour mutations that lead to the generation of a longer form of the cabRNA that cannot activate CdnE03. As the mammalian cyclase OAS1 also binds viral double-stranded RNA during the interferon response, our results reveal a conserved mechanism for the activation of innate antiviral defence pathways.


Assuntos
Bactérias , Nucleotidiltransferases , RNA Viral , Fagos de Staphylococcus , Animais , 2',5'-Oligoadenilato Sintetase/metabolismo , Bactérias/enzimologia , Bactérias/imunologia , Evolução Molecular , Imunidade Inata , Nucleotidiltransferases/metabolismo , Oligonucleotídeos/imunologia , Oligonucleotídeos/metabolismo , RNA Viral/imunologia , RNA Viral/metabolismo , Transdução de Sinais/imunologia , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/imunologia
11.
Sci Rep ; 13(1): 18204, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875544

RESUMO

S. aureus is a pathogen that frequently causes severe morbidity and phage therapy is being discussed as an alternative to antibiotics for the treatment of S. aureus infections. In this in vitro and animal study, we demonstrated that the activity of anti-staphylococcal phages is severely impaired in 0.5% plasma or synovial fluid. Despite phage replication in these matrices, lysis of the bacteria was slower than phage propagation, and no reduction of the bacterial population was observed. The inhibition of the phages associated with a reduction in phage adsorption, quantified to 99% at 10% plasma. S. aureus is known to bind multiple coagulation factors, resulting in the formation of aggregates and blood clots that might protect the bacterium from the phages. Here, we show that purified fibrinogen at a sub-physiological concentration of 0.4 mg/ml is sufficient to impair phage activity. In contrast, dissolution of the clots by tissue plasminogen activator (tPA) partially restored phage activity. Consistent with these in vitro findings, phage treatment did not reduce bacterial burdens in a neutropenic mouse S. aureus thigh infection model. In summary, phage treatment of S. aureus infections inside the body may be fundamentally challenging, and more investigation is needed prior to proceeding to in-human trials.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Animais , Camundongos , Staphylococcus aureus/fisiologia , Ativador de Plasminogênio Tecidual , Líquido Sinovial , Infecções Estafilocócicas/terapia , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus/fisiologia , Antibacterianos
12.
Appl Microbiol Biotechnol ; 107(23): 7231-7250, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741937

RESUMO

Staphylococcus aureus is one of the most relevant mastitis pathogens in dairy cattle, and the acquisition of antimicrobial resistance genes presents a significant health issue in both veterinary and human fields. Among the different strategies to tackle S. aureus infection in livestock, bacteriophages have been thoroughly investigated in the last decades; however, few specimens of the so-called jumbo phages capable of infecting S. aureus have been described. Herein, we report the biological, genomic, and structural proteomic features of the jumbo phage vB_SauM-UFV_DC4 (DC4). DC4 exhibited a remarkable killing activity against S. aureus isolated from the veterinary environment and stability at alkaline conditions (pH 4 to 12). The complete genome of DC4 is 263,185 bp (GC content: 25%), encodes 263 predicted CDSs (80% without an assigned function), 1 tRNA (Phe-tRNA), multisubunit RNA polymerase, and an RNA-dependent DNA polymerase. Moreover, comparative analysis revealed that DC4 can be considered a new viral species belonging to a new genus DC4 and showed a similar set of lytic proteins and depolymerase activity with closely related jumbo phages. The characterization of a new S. aureus jumbo phage increases our understanding of the diversity of this group and provides insights into the biotechnological potential of these viruses. KEY POINTS: • vB_SauM-UFV_DC4 is a new viral species belonging to a new genus within the class Caudoviricetes. • vB_SauM-UFV_DC4 carries a set of RNA polymerase subunits and an RNA-directed DNA polymerase. • vB_SauM-UFV_DC4 and closely related jumbo phages showed a similar set of lytic proteins.


Assuntos
Bacteriófagos , Fagos de Staphylococcus , Animais , Bovinos , Feminino , Humanos , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética , Proteômica , Genoma Viral , Genômica , Bacteriófagos/genética , RNA Polimerases Dirigidas por DNA/genética , RNA de Transferência
13.
Cell ; 186(16): 3414-3426.e16, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541198

RESUMO

Lateral transduction (LT) is the process by which temperate phages mobilize large sections of bacterial genomes. Despite its importance, LT has only been observed during prophage induction. Here, we report that superantigen-carrying staphylococcal pathogenicity islands (SaPIs) employ a related but more versatile and complex mechanism of gene transfer to drive chromosomal hypermobility while self-transferring with additional virulence genes from the host. We found that after phage infection or prophage induction, activated SaPIs form concatamers in the bacterial chromosome by switching between parallel genomic tracks in replication bubbles. This dynamic life cycle enables SaPIbov1 to piggyback its LT of staphylococcal pathogenicity island vSaα, which encodes an array of genes involved in host-pathogen interactions, allowing both islands to be mobilized intact and transferred in a single infective particle. Our findings highlight previously unknown roles of pathogenicity islands in bacterial virulence and show that their evolutionary impact extends beyond the genes they carry.


Assuntos
Ilhas Genômicas , Fagos de Staphylococcus , Staphylococcus , Genoma Bacteriano , Staphylococcus/genética , Staphylococcus/patogenicidade , Virulência , Transdução Genética
14.
Protein Sci ; 32(9): e4737, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497650

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening human infections. Bacteriophage-encoded endolysins degrade the cell walls of Gram-positive bacteria by selectively hydrolyzing the peptidoglycan layer and thus are promising candidates to combat bacterial infections. PlyGRCS, the S. aureus-specific bacteriophage endolysin, contains a catalytic CHAP domain and a cell-wall binding SH3_5 domain connected by a linker. Here, we show the crystal structure of full-length PlyGRCS refined to 2.1 Å resolution. In addition, a serendipitous finding revealed that PlyGRCS binds to cold-shock protein C (CspC) by interacting with its CHAP and SH3_5 domains. CspC is an RNA chaperone that plays regulatory roles by conferring bacterial adaptability to various stress conditions. PlyGRCS has substantial lytic activity against S. aureus and showed only minimal change in its lytic activity in the presence of CspC. Whereas the PlyGRCS-CspC complex greatly reduced CspC-nucleic acid binding, the aforesaid complex may downregulate the CspC function during bacterial infection. Overall, the crystal structure and biochemical results of PlyGRCS provide a molecular basis for the bacteriolytic activity of PlyGRCS against S. aureus.


Assuntos
Proteínas de Bactérias , Proteínas e Peptídeos de Choque Frio , Endopeptidases , Proteínas de Choque Térmico , Staphylococcus aureus Resistente à Meticilina , Fagos de Staphylococcus , Humanos , Proteínas e Peptídeos de Choque Frio/química , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/metabolismo , Staphylococcus aureus Resistente à Meticilina/virologia , Proteínas de Bactérias/química , Proteínas de Choque Térmico/química , Fagos de Staphylococcus/enzimologia
15.
Viruses ; 15(7)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37515114

RESUMO

The issue of antibiotic resistance in healthcare worldwide has led to a pressing need to explore and develop alternative approaches to combat infectious diseases. Among these methods, phage therapy has emerged as a potential solution to tackle this growing challenge. Virulent phages of the Herelleviridae family, known for their ability to cause lysis of Staphylococcus aureus, a clinically significant pathogen frequently associated with multidrug resistance, have proven to be one of the most effective viruses utilized in phage therapy. In order to utilize phages for therapeutic purposes effectively, a thorough investigation into their physiology and mechanisms of action on infected cells is essential. The use of omics technologies, particularly total RNA sequencing, is a promising approach for analyzing the interaction between phages and their hosts, allowing for the assessment of both the behavior of the phage during infection and the cell's response. This review aims to provide a comprehensive overview of the physiology of the Herelleviridae family, utilizing existing analyses of their total phage transcriptomes. Additionally, it sheds light on the changes that occur in the metabolism of S. aureus when infected with virulent bacteriophages, contributing to a deeper understanding of the phage-host interaction.


Assuntos
Bacteriófagos , Caudovirales , Terapia por Fagos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Bacteriófagos/genética , Fagos de Staphylococcus/genética , Infecções Estafilocócicas/terapia
16.
Front Cell Infect Microbiol ; 13: 1169135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293203

RESUMO

S. epidermidis is an important opportunistic pathogen causing chronic prosthetic joint infections associated with biofilm growth. Increased tolerance to antibiotic therapy often requires prolonged treatment or revision surgery. Phage therapy is currently used as compassionate use therapy and continues to be evaluated for its viability as adjunctive therapy to antibiotic treatment or as an alternative treatment for infections caused by S. epidermidis to prevent relapses. In the present study, we report the isolation and in vitro characterization of three novel lytic S. epidermidis phages. Their genome content analysis indicated the absence of antibiotic resistance genes and virulence factors. Detailed investigation of the phage preparation indicated the absence of any prophage-related contamination and demonstrated the importance of selecting appropriate hosts for phage development from the outset. The isolated phages infect a high proportion of clinically relevant S. epidermidis strains and several other coagulase-negative species growing both in planktonic culture and as a biofilm. Clinical strains differing in their biofilm phenotype and antibiotic resistance profile were selected to further identify possible mechanisms behind increased tolerance to isolated phages.


Assuntos
Bacteriófagos , Terapia por Fagos , Infecções Estafilocócicas , Humanos , Bacteriófagos/genética , Staphylococcus epidermidis , Antibacterianos/farmacologia , Biofilmes , Fagos de Staphylococcus/genética
17.
Int J Food Microbiol ; 399: 110227, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37148666

RESUMO

Staphylococcus aureus is a Gram-positive human opportunistic pathogen that may also cause food poisoning because of the ability of some strains to produce heat stable enterotoxins that can persist in food even after the pathogen is successfully eliminated. In this context, biopreservation may be a forward-looking strategy to help eliminate staphylococcal contamination in dairy products by using natural compounds. However, these antimicrobials exhibit individual limitations that may be overcome by combining them. This work investigates the combination of a virulent bacteriophage, phiIPLA-RODI, a phage-derived engineered lytic protein, LysRODIΔAmi, and the bacteriocin nisin for the elimination of S. aureus during lab-scale cheese production at two CaCl2 concentrations (0.2 % and 0.02 %), and subsequent storage at two different temperatures (4 °C and 12 °C). In most of the assayed conditions, our results demonstrate that the combined action of the antimicrobials led to a greater reduction of the pathogen population than the compounds individually, albeit this effect was additive and not synergistic. However, our results did show synergy between the three antimicrobials for reducing the bacterial load after 14 days of storage at 12 °C, temperature at which there is growth of the S. aureus population. Additionally, we tested the impact of the calcium concentration on the activity of the combination treatment and observed that higher CaCl2 levels led to a notable increase in endolysin activity that allowed the utilization of approximately 10-times less protein to attain the same efficacy. Overall, our data show that the combination of LysRODIΔAmi with nisin and/or phage phiIPLA-RODI, and an increase in the calcium concentration are successful strategies to decrease the amount of protein required for the control of S. aureus contamination in the dairy sector with a low potential for resistance selection, thereby reducing costs.


Assuntos
Anti-Infecciosos , Queijo , Nisina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Nisina/farmacologia , Cálcio/farmacologia , Queijo/microbiologia , Cloreto de Cálcio/farmacologia , Fagos de Staphylococcus , Antibacterianos/farmacologia
18.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983034

RESUMO

Phage therapy has been successfully used as an experimental therapy in the treatment of multidrug-resistant strains of Staphylococcus aureus (MDRSA)-caused skin infections and is seen as the most promising alternative to antibiotics. However, in recent years a number of reports indicating that phages can interact with eukaryotic cells emerged. Therefore, there is a need to re-evaluate phage therapy in light of safety. It is important to analyze not only the cytotoxicity of phages alone but also the impact their lytic activity against bacteria may have on human cells. As progeny virions rupture the cell wall, lipoteichoic acids are released in high quantities. It has been shown that they act as inflammatory agents and their presence could lead to the worsening of the patient's condition and influence their recovery. In our work, we have tested if the treatment of normal human fibroblasts with staphylococcal phages will influence the metabolic state of the cell and the integrity of cell membranes. We have also analyzed the effectiveness of bacteriophages in reducing the number of MDRSA attached to human fibroblasts and the influence of the lytic activity of phages on cell viability. We observed that, out of three tested anti-Staphylococcal phages-vB_SauM-A, vB_SauM-C and vB_SauM-D-high concentrations (109 PFU/mL) of two, vB_SauM-A and vB_SauM-D, showed a negative impact on the viability of human fibroblasts. However, a dose of 107 PFU/mL had no effect on the metabolic activity or membrane integrity of the cells. We also observed that the addition of phages alleviated the negative effect of the MDRSA infection on fibroblasts' viability, as phages were able to effectively reduce the number of bacteria in the co-culture. We believe that these results will contribute to a better understanding of the influence of phage therapy on human cells and encourage even more studies on this topic.


Assuntos
Bacteriófagos , Terapia por Fagos , Infecções Estafilocócicas , Infecções Cutâneas Estafilocócicas , Humanos , Staphylococcus aureus , Infecções Estafilocócicas/terapia , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fibroblastos
19.
Microbiol Res ; 271: 127369, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36996644

RESUMO

The study of bacteriophages is experiencing a resurgence with the increasing development of antimicrobial resistance in Staphylococcus aureus. Nonetheless, the genetic features of highly efficient lytic S. aureus phage remain to be explored. In this study, two lytic S. aureus phages, SapYZU11 and SapYZU15, were isolated from sewage samples from Yangzhou, China. The phage morphology, one-step growth, host spectrum and lytic activity of these phages were examined, and their whole-genome sequences were analysed and compared with 280 published genomes of staphylococcal phages. The structural organisation and genetic contents of SapYZU11 and SapYZU15 were investigated. The Podoviridae phage SapYZU11 and Herelleviridae phage SapYZU15 effectively lysed all of the 53 S. aureus strains isolated from various sources. However, SapYZU15 exhibited a shorter latent period, larger burst size and stronger bactericidal ability with an anti-bacterial rate of approximately 99.9999% for 24 h. Phylogenetic analysis revealed that Herelleviridae phages formed the most ancestral clades and the S. aureus Podoviridae phages were clustered in the staphylococcal Siphoviridae phage clade. Moreover, phages in different morphology families contain distinct types of genes associated with host cell lysis, DNA packaging and lysogeny. Notably, SapYZU15 harboured 13 DNA metabolism-related genes, 5 lysin genes, 1 holin gene and 1 DNA packaging gene. The data suggest that S. aureus Podoviridae and Siphoviridae phages originated from staphylococcal Herelleviridae phages, and the module exchange of S. aureus phages occurred in the same morphology family. Moreover, the extraordinary lytic capacity of SapYZU15 was likely due to the presence of specific genes associated with DNA replication, DNA packaging and the lytic cycle.


Assuntos
Bacteriófagos , Siphoviridae , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Esgotos , Filogenia , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus/genética
20.
ACS Infect Dis ; 9(3): 497-506, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36787534

RESUMO

With the continuous emergence and spread of drug-resistant and multi-drug-resistant Staphylococcus aureus, traditional antibiotic treatment has gradually lost its effect. There is an urgent need to develop and study new and effective bio-green inhibitors to control S. aureus. In this study, the S. aureus phage DZ25 was isolated from milk and the lysin LysDZ25 with excellent tolerance to serum and NaCl solution was identified. Subsequently, to improve the lytic activity and thermal stability of LysDZ25, RoseTTAFold was used to construct three-dimensional (3D) structures, molecular dynamics (MD) simulation was used for conformational acquisition, and the MDL strategy previously developed in our lab was used to rationally design variants. After two rounds of rational design, the optimal variant with improved thermal stability, S333V/N245R/D299L, was obtained, and its half-life time was 4.0-fold that of wild-type LysDZ25. At 37, 40, 45, and 50 °C, the lytic activity of the optimal triple-point variant S333V/N245R/D299L was increased by 17.3-, 26.7-, 20.2-, and 50.1-fold compared with that of the wild-type LysDZ25, respectively. Finally, cell count was used to evaluate the lytic activity, and the results showed that the optimal variant S333V/N245R/D299L could drop about 3.5 log 10 values compared with the control and about 2.6 log 10 values compared with the wild-type LysDZ25.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Fagos de Staphylococcus/genética , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...